TIMMO-2-USE Partners

AbsInt Angewandte Informatik GmbH
Arcticus Systems AB
Chalmers University of Technology
Continental Automotive GmbH
Delphi France SAS
dSpace GmbH
INCHRON GmbH
Institute National de Recherche en Informatique et Automatique
INRIA
Mälardalen University
Rapita Systems Ltd, UK
RealTime-at-Work
Robert Bosch GmbH
Symtavision GmbH
Technische Universität Braunschweig
University of Paderborn
Volvo Technology AB

Project Coordinator

Dr. Daniel Karlsson
Volvo Technology AB
Dept 6270, M2.7
405 08 Göteborg
Sweden
Tel.: +46 31 322 9949
Email: Daniel.B.Karlsson@volvo.com

© Copyright 2010: The TIMMO-2-USE Consortium
Authors

Stefan Kuntz, Continental Automotive GmbH (Editor)
Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2011-02-21</td>
<td>First version.</td>
</tr>
</tbody>
</table>
Table of contents

TIMMO-2-USE Partners ... 2
Authors .. 3
Document History .. 4
Table of contents ... 5
1 Introduction .. 6
2 Requirements ... 7
 2.1 WP1 – Use Cases and Requirements 7
 2.2 WP2 – Language .. 18
 2.2.1 Constraints ... 18
 2.2.2 Distribution ... 26
 2.2.3 Events ... 27
 2.2.4 Exchange .. 28
 2.2.5 Hardware .. 31
 2.2.6 Mode .. 33
 2.2.7 Reuse ... 36
 2.2.8 Time .. 37
 2.2.9 Tracing ... 39
 2.3 WP3 – Algorithms and Tools ... 43
 2.4 WP4 – Methodology .. 52
 2.5 WP5 – Validation ... 61
1 Introduction

Purpose

The purpose of this document is to document all requirements that have been defined during the course of work package 1 “Use Cases and Requirements”.

Scope

This document contains the requirements stated for work package 1 “Use Cases and Requirements” to work package 5 “Validation”.

Format of Requirements

Every requirement in this document is described using the format as described below:

Name: This field contains the unique requirement identification (RID) which unequivocally signifies a requirement. It consists of the partner’s abbreviation, for example CAG (capital letters) immediately followed by the number sign ‘#’ and immediately followed by a four digit number including leading zeros ‘0’. For example CAG#0005 or CAG#0078 or CAG#0987 or CAG#1024.

Alias: This field contains the short name of the requirement in order to convey – at least – the particular purpose of the requirement. The field “Name” containing the requirement identification is not very expressive and the alias should help to convey the purpose of the requirement.

Description: The field “Notes” contains the sentence that states the specific requirement. In addition it can contain more information providing more background on the requirement, like reason, observation, rationale, etc.

Status: This field contains one of the following states: Proposed, Approved, Rejected, and Implemented.

Priority: This field corresponds with the degree of necessity as described below. The Enterprise Architect predefines three priorities: High, Medium, and Low. In our context High corresponds to Essential, Medium corresponds to Conditional, and Low corresponds to Optional.

Explanation: In the course of the TIMMO-2-USE project this field is used later to provide further information on the requirement’s status.

Type: Requirement

Relations: In the course of the TIMMO-2-USE project this field is used later to indicate the solution that is associated with the requirement. In some cases – specifically the requirements that state the necessity of a use case – this field contains references to other requirements.
2 Requirements

2.1 WP1 – Use Cases and Requirements

ABS#UC0002 - Perform Timing Analysis On Code-Level

Name: ABS#UC0002 - Perform Timing Analysis On Code-Level
Alias: Perform Timing Analysis On Code-Level
Description: Determine a reasonable value of the WCET of a runnable entity
Implies the necessity of requirements ABS#0003 – ABS#0013.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

CAG#0022 - Transition from DL to IL

Name: CAG#0022 - Transition from DL to IL
Alias: Transition from DL to IL
Description: The methodology shall describe the steps to be taken to transform timing information on the EAST-ADL design level to timing information on the EAST-ADL implementation level.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0023 - Transition from AL to DL

Name: CAG#0023 - Transition from AL to DL
Alias: Transition from AL to DL
Description: The methodology shall describe the steps to be taken to transform timing information on the EAST-ADL analysis level to timing information on the EAST-ADL design level.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0028 - Integrating a component

Name: CAG#0028 - Integrating a component
Alias: Integrating a component
Description: The methodology shall describe the steps to be taken in order to integrate a component in a given system.
CAG#0029 - Exchange a component

Name: CAG#0029 - Exchange a component
Alias: Exchange a component
Description: The methodology shall describe the steps to be taken in order to exchange a component between two peers.

Rational: Typically, the exchange of a component is not only passing an artifact/artifacts from one peer to another, but it also involved steps to be taken prior to this exchange (configuration), and after this exchange (validation).

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

TUBS#0002 - Uncertain parameters

Name: TUBS#0002 - Uncertain parameters
Alias: Uncertain parameters
Description: The use cases shall specify uncertain parameter values using mathematical functions.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#UC001 - OEM-Supplier time budgeting

Name: VTEC#UC001 - OEM-Supplier time budgeting
Alias: OEM-Supplier time budgeting
Description: OEM decomposes the overall end-to-end latency to the timing budgets of individual ECUs and network bus. OEM then assigns these timing budgets to the suppliers.

UC Name: OEM_Supplier_Timing_Analysis
Source: VTEC
Motivation: An E2E function normally spans over several ECUs and across the responsibility of multiple suppliers. OEM needs to divide the overall end-to-end latency to the ECUs and the communication channels, and negotiate these timing budgets with the suppliers.
Stakeholders: Automotive OEM and suppliers.
Process context: The initial negotiation between the OEM and the suppliers to specify the requirements; During the development when the OEM wants to verify or modify the timing budget.
Product context: Any function that requires more than one supplier.
Organization context: The OEM is responsible for the specification and
verification.

At the beginning of a project, the OEM must properly decide the time budgets for each ECU and communicate the specification to the suppliers. During the development process, the OEM and the suppliers want to keep the two-way feedback. When the suppliers have refined solutions at the proper abstraction level, the OEM can estimate if the time budgets are realistic, and may either ask the supplier to improve the solution or adjust the time budgets. On the other hand, given the timing estimates of the individual parts, the OEM may revise the timing requirements on vehicular functions to achieve optimal performance or cost of the entire vehicle.

We need to perform WCET analysis on all relevant levels of abstraction, although the cross-supplier issue arises mostly on the implementation level and possibly to some extent also on the design level.

Vehicle: N/A
Analysis: Simulink (or other behavioral) model using some hardware-independent time unit. This type of analysis can be used to determine properties on hardware needed to satisfy the timing budget.
Design: Simulink model (or other behavioral) on hardware with given characteristics. Can we say something about the OS task and communication bus schedules?
Implementation: C code on concrete hardware.

Implied TADL Support and Relevance to TIMMO-2-USE
This use case is related to the following work packages.
WP2 (Language)
Structural extensions, including (1) the modeling constructs for timing budgets, hardware timing characterization, timing properties of executable code and communication channels, etc. (2) traceability between the analysis results at different abstraction levels.
Algorithm specific extensions: Language constructs to support relevant methods for timing analysis, e.g., the estimation of WCET and communication latency.
Methodological extensions: Effective communication between the OEM and the suppliers; Progressive negotiation on timing budgets; Support for different proposals.
Semantical reasoning
WP3 (Algorithms & Tools)
More precise timing analysis methods to obtain good timing estimates at the analysis and design levels.
Improved timing information exchange between tools and stakeholders; optimized tool chain based on exchange format induced by the new TADL definitions.
WP4 (Methodology)
Better support for collaboration through (1) the investigation on what information has to be shared between OEM and the suppliers while maintaining IP integrity of the collaborators. (2) the negotiation on the timing budgets among all collaborators.
Virtual system integration: Estimation and validation of the overall timing requirements of the vehicular function based on the design models at the analysis and design levels, before the executable code is available.

Status: Approved
Priority: Medium
Explanation: None
VTEC#UC002 - Mode-specific timing characterization

Name: VTEC#UC002 - Mode-specific timing characterization
Alias: Mode-specific timing characterization
Description: Developers specify the timing characterization for each running mode of the application.

UC Name: Mode_Specific_Timing_Characterization
Source: VTEC
Motivation: A function behaves differently in time depending on the present vehicle mode. The vehicle mode, such as the vehicle is running or parked, determines the active states of software components and power states of ECUs and networks. It hence has a great impact on the timing performance of the vehicle functions.
Stakeholder: Function owner and developer
Process context: Specification and development phases
Product context: All vehicle embedded systems
Organization context: OEMs and suppliers

The mode has an impact on the state of software component, the OS task schedule, and the network schedule. One may need to specify the timing property of the functions for each mode. For best performance, it is even preferable to find the optimal task and bus schedules for each mode.

When the mode needs to be changed, the change event or change request must be propagated to the related components via the network. To maintain global mode consistency and high performance, the mode manager must arbitrate the mode switch requests, decide the proper target mode, and respond to the affected components. This mode request-decision-reply process must be bound by a deadline. As a side-effect, this process may also significantly increase the transient bus traffic.

Implied TADL Support and Relevance to TIMMO-2-USE
This use case is related to the following work packages.
WP2 (Language)
Structural extensions: Mode-dependent timing descriptions; Mode-dependent descriptions on task and bus schedules at the implementation level; Timing constraints on mode management operations, etc.
Algorithm-specific extensions: Mode-dependent bus scheduling parameters; Requirements on mode management.

WP3 (Algorithms & Tools)
Methods and tools to obtain good task and bus schedules based on modes.
Methods and tools to manage the mode consistency and optimize system performance.

WP4 (Methodology)
Collaboration on the mode-dependent function distributed to multiple suppliers.

Status: Approved
VTEC#UC003 - Change Management

Name: VTEC#UC003 - Change Management
Alias: Change Management
Description: Engineers effectively manage the change to the system

UC Name: Change_Management
Source: VTEC
Motivation: Product development is mostly about modifying or improving an existing system with new functionality. Even for new product development, the process consists of several iterations with a lot of modifications between iterations. It is therefore of crucial importance to establish efficient change management.
Stakeholders: OEM and function developers
Process context: Development of new functions; Evolvement of existing functions
Product context: Both new and existing functions
Organization context: Function owners and developers

This use case discusses the change management process from the time perspective. Relevant issues to consider are:
- What other parts of the system (functions/features, ECUs, busses) are affected by a certain change in timing characteristics?
- How can suppliers be notified and timing budgets/contracts most conveniently be negotiated again?
- When should one notify a change to others and who should receive the notification? Note that notification/change request implies additional cost.
- How can one capture several design alternatives in the same model?

Implied TADL Support and Relevance to TIMMO-2-USE
The following work packages are related to this use case.
WP2 (Language)
Methodological extensions: Cost estimates and other information needed for the change process.
Semantical reasoning.

WP3 (Algorithms & Tools)
Improved timing information exchange between tools and stakeholders.
Tool support for storing and comparing several design alternatives.

WP4 (Methodology)
An effective collaboration process for managing the change request and maintain the system consistency.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

Deliverable D1.1 Version 1.0 11
VTEC#UC004 - Iterative Design Process

Name: VTEC#UC004 - Iterative Design Process
Alias: Iterative Design Process
Description: The development process of vehicle electronic systems is always iterative.

UC Name: Iterative_Design_Process
Source: VTEC
Motivation: The development process of vehicle electronic systems is always iterative. Even when a completely new architecture is being developed, different functions are added at different times.
Stakeholders: Function owners and developers.
Process Context: Introduction of new functions and evolvement of existing ones.
Product Context: All vehicle electronic systems.
Organization Context: OEM and suppliers.

This use case is closely related to the use case of Change Management. The emphasis is on the double way communication between the developers of different functions. The introduction or modification on one function requires negotiation and compromise with other related functions.

Handling timing requirements along such iterative design processes needs to be addressed in a systematic way, for example when deciding a time budget for the different functions having in mind that there are uncertainties related to future functions that might affect the overall time aspects of the system.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#UC005 - Control application development

Name: VTEC#UC005 - Control application development
Alias: Control application development
Description: Developers of automotive control programs use TADL to specify both continuous time characterizations of the abstract controller and the discrete-time characterization of the implementation.

UC Name: Control_Application_Development
Source: VTEC
Motivation: Validating and improving TADL’s capability of describing the timing requirements of control applications
Stakeholders: OEM; Supplier of the control application
Process Context: Communication between OEM and supplier on the control function
Product Context: Introducing a new feature or improving an existing one
Organization Context: OEM departments who are responsible for control functions; Suppliers who are experts on physical modeling and control engineering

Implied TADL Support and Relevance to TIMMO-2-USE
In control engineering, the controller is usually designed using continuous or discrete time methods without considering the implementation and final deployment. In real implementation, various delays caused by computation time, resource contention, communication, and so on, may violate timing constraints and deteriorate the control performance.

Consequently TADL should be able to describe the timing requirements of the original controller and maintain the traceability between the controller and its implementation. For the original controller, TADL should support the description of its timing properties, e.g., settling time, rise time, allowable sampling period, etc. To account for the inevitable delays caused by implementation, the allowable delays within the control loop should also be captured in the TADL model. These high-level timing requirements on the control application will be converted to the timing requirements on the implementation components. Such information includes, for instance, WCET, computation deadline, maximal end-to-end delay, etc.

A high-level control design can be decomposed to individual software components in many ways and the components can be allocated to the ECUs in different ways. The decomposition and allocation significantly influence the timing performance of the control application. While subject to practical constraints, the possible combinations may still be numerous. It is an interesting topic for TIMMO2 to study the algorithm for choosing the optimal combination.

Comment: This use case might be identical to the use cases from Bosch and Continental. If so, we may delete it. Keep.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#UC006 - Variability

Name: VTEC#UC006 - Variability
Alias: Variability
Description: OEM and suppliers use TADL to define the design variation at the vehicle level. This variation is broken down to different SW/HW configurations and the traceability is maintained by TADL.

UC Name: Variability
Source: VTEC
Motivation: Variability is an important source for complexity in automotive systems because it leads to a very large number of possible combinations and therefore becomes difficult to handle.
Stakeholders: Function developers; system engineer responsible for integration.
Process context: Initial system specification and component allocation; System integration.
Product context: Functions with different requirements and configuration for different vehicle models.
Organization context: OEM and suppliers who maintain multiple versions of vehicle functions.

Implied TADL Support and Relevance to TIMMO-2-USE
Variability on timing specifications can arise at different abstraction levels. At vehicle level, vehicle configurations are typically defined, each configuration being defined as the features or functions available for the end customer in that particular vehicle configuration. Knowledge on the possible vehicle configurations is often exploited to devise smart design solutions: not all the vehicle functions are present in a given vehicle configuration (that is, no vehicle will be manufactured with all the functions that are possible in that type of vehicle, the end customer cannot freely choose whatever combination, but there are a number of pre-defined vehicle configurations). This implies that it is possible to design the system in such a way that, when considering all the functions, the time budget exceeds 100%, yet the time constraints are fulfilled, simply because we know that there exist vehicle configurations that put constraints on which functions are present on the same vehicle.

It is therefore important to take into account variability, for instance how to capture timing information at the very high levels of abstraction (vehicle level) knowing that vehicle configurations do influence timing at lower levels. For instance, a system has commonly several variants of a specific functionality. This can be implemented as that one or more components are replaceable. The overall timing requirements must be met for each variant and support for specification and analysis at all abstraction levels is necessary.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#UC007 - Separation of Application and Infrastructure

Name: VTEC#UC007 - Separation of Application and Infrastructure
Alias: Separation of Application and Infrastructure
Description: Developers separately design and implement the applications and the platform. TADL model reflects the separation and also describes the binding effect of the two.

UC Name: Separation_of_Application_and_Infrastructure
Source: VTEC
Motivation: The separation of applications and infrastructure is an effective way to manage the complexity and to enable the easy re-allocation of applications to ECUs.
Stakeholders: System architects and system integrators; Vendors of platform and/or middleware.
Process context: Making decisions on embedded system architecture
Product context: System architecture; All aspects of the embedded system development.
Organization context: Departments responsible for platform and architecture.

Implied TADL Support and Relevance to TIMMO-2-USE
However, a challenge is to capture timing aspects while keeping the separation of application and infrastructure: an example is latency times which depend both on the application (e.g. the control algorithm) and the infrastructure (e.g. the target hardware). It is needed a smooth way to couple application-specific timing information and infrastructure-specific timing information.

The challenge for this process is to capture timing aspects while keeping the
separation of application and infrastructure. For example, the end-to-end latency of an event chain depends on both the application (e.g. the control algorithm) and the infrastructure (e.g. the target hardware). We need a smooth way to bind the application-specific timing information and the infrastructure-specific timing information.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations: VTEC#0003
VTEC#0004

VTEC#UC008 - Model exchange

Name: VTEC#UC008 - Model exchange
Alias: Model exchange
Description: The engineer exchanges models between different tools.

UC Name: Model_Endpoints
Source: VTEC
Motivation: TADL model works as the universal intermediate format. The timing information in other model formalisms can be extracted and automatically transformed into the TADL model and the TADL model can be transformed into other model formalisms for analysis and testing. The transformation must be done in such a way that the existing timing specifications are preserved.
Stakeholders: System integrators.
Process context: Deploying software applications on the platform.
Product context: Configurations on the software build and the hardware platform.
Organization context: Department responsible for system integration and configuration.

Implied TADL Support and Relevance to T2U

Comment: Could be combined with UC001 and UC008.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations: VTEC#0036

VTEC#UC009 - System parameterization

Name: VTEC#UC009 - System parameterization
Alias: System parameterization
Description: The engineer gets support from tools for conveniently setting up system parameters.

UC Name: Efficient_System_Post-build_Parameterization
Source: VTEC
Motivation: The developer must fill in a large number of system parameters for implementation, and these parameters such as the size of Tx/Rx buffers and the
configuration of network affect the timing performance. It is however not easy to choose the right values and is also a tedious job to manually fill in them.

Stakeholders: System integrators.

Process context: Deploying software applications on the platform.

Product context: Configurations on the software build and the hardware platform.

Organization context: Department responsible for system integration and configuration.

Implied TADL Support and Relevance to T2U

With the post-build feature, AUTOSAR allows parameterization on all levels of implementation, including functional features, routing tables, ECU and network characteristics. T2U should study how to model these parameters using TADL. The optimal values are better determined by a dedicated tool and the values in the model can be automatically transferred to the AUTOSAR development tool with minimal human effort.

Because of the large number of parameters and their profound effect, T2U can set limitations on what level of parameters TADL should handle. Allowing post-build for all possible parameters is unrealistic. A modest objective is to identify the parameters in the model and allow their values to be automatically transferred to the AUTOSAR implementation. The algorithm and tool to decide the optimal values of these parameters can be investigated by T2U.

Comment: this use case is closely related to Change Management.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#UC010 - Synchronization

Name: VTEC#UC010 - Synchronization
Alias: Synchronization
Description: The engineer specifies synchronization constraints on system timing.

UC Name: Synchronization

Source: VTEC

Motivation: An application may have synchronization requirements on the arrival time or age of multiple events from distinct sources and routes. Failure of the synchronization requirement may jeopardize the function of the application.

Stakeholders: Function developer.

Process context: Development and V&V phase.

Product context: Advanced function.

Organization context: Suppliers responsible for the function.

Implied TADL Support and Relevance to T2U

A typical application with this synchronization requirement is the Electronic Stability Control (ESC). ESC continuously monitors the slipping conditions of the wheels. The signals from all wheels must represent the conditions of the wheels at the same time. Owing to the disturbance in the ECU and the network, one or more wheel slip signals might be delayed and the time synchronization is not
preserved at ESC. The consequence of this is that the stability actions are not the optimal. In addition, along the other signal flow direction, the actuation signals from ESC to the wheels must also be synchronized. TADL must support the engineer to specify and analyze synchronization timing constraints to prevent such problems.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations: VTEC#0039

VTEC#UC011 - Probabilistic timing properties

Name: VTEC#UC011 - Probabilistic timing properties
Alias: Probabilistic timing properties
Description: Timing properties and constraints may not be deterministic. They can be given as probabilistic values with distribution functions. Stakeholders need to describe and analyze systems with such timing properties.

UC Name: Probabilistic_Timing_Properties
Source: VTEC
Motivation: Probabilistic timing properties are often given for and even preferred by soft real-time applications, where certain amounts of constraint violations are acceptable. For such systems, we need to only guarantee the safety with a probability. This relaxed safety requirement admits tremendous flexibility to stakeholders.
Stakeholders: OEMs, suppliers, and all function developers.
Process context: System specification; the development process; the verification and testing process.
Product context: Non-time-critical applications.
Organization context: All stakeholders

Implied TADL Support and Relevance to T2U

Deterministic timing properties, e.g. WCET and deadline, are critical for hard real-time systems; however, the majority of the applications are soft, i.e., certain amount of constraint violations are acceptable. Timing properties of these soft real-time applications may be given as probabilistic values of certain distribution functions.

TADL shall allow developers to describe such probabilistic timing properties of events and event chains. The safety constraints of the system should then be associated to probabilities. For example, the end-to-end delay of an event chain must be smaller than 10 ms in 99% of the occasions.

Methods and tools for analyzing timing properties must be adapted. For example, the schedulability test cannot only return true or false. The answer should be the probability of the schedulability.

Development methodology must be adapted to allow the new type of specifications and analysis.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
2.2 WP2 – Language

2.2.1 Constraints

BOSCH#0001 - Control Timing Requirements

Name: BOSCH#0001 - Control Timing Requirements
Alias: Control Timing Requirements
Description: The TADL shall be capable of modeling intrinsic timing requirements of the plant to be controlled.
Examples are:
- Analytical time constants of the plant
- Shannon threshold frequency of the plant

Rationale: These timing requirements span the possible design space for a discrete software solution of the controller (e.g. selection of a sampling rate and a discretization method).

Comment: Isn’t this the transition from the functional to the SW/HW domain, is it? WP4 shall describe how to accomplish this with the given EAST-ADL / TADL elements. Supporting co-engineering between function and HW/SW development.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

CAG#0003 - Age constraint on port

Name: CAG#0003 - Age constraint on port
Alias: Age constraint on port
Description: The language shall provide the capability to specify the age of data on a port.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0004 - Synchronization constraint on ports

Name: CAG#0004 - Synchronization constraint on ports
Alias: Synchronization constraint on ports
Description: The language shall provide the capability to specify synchronization constraints of data on more than one port.

Status: Approved
CAG#0012 - Semantics of event chains (component)

Name: CAG#0012 - Semantics of event chains (component)
Alias: Semantics of event chains (component)
Description: The language shall specify the semantics of event chains spanning across components (from input ports to output ports).
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

CAG#0013 - Semantics of event chains (connector)

Name: CAG#0013 - Semantics of event chains (connector)
Alias: Semantics of event chains (connector)
Description: The language shall specify the semantics of event chains spanning connectors (from output ports to input ports).
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

CAG#0014 - Composability of runnable entities

Name: CAG#0014 - Composability of runnable entities
Alias: Composability of runnable entities
Description: The language shall support the capability to compose runnable entities based on given runnable entities.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

CAG#0015 - Assumptions on target systems

Name: CAG#0015 - Assumptions on target systems
Alias: Assumptions on target systems
Description: The language shall provide means to specify the assumptions made on possible target systems.

Rationale: A given system imposes requirements on a component that is operated in this system. However, a component makes some assumptions on the target system in order to operate properly.

Status: Approved
Priority: Medium
Explaination: None
Type: Requirement
Relations:

CAG#0025 - Safety (timing)

Name: CAG#0025 - Safety (timing)
Alias: Safety (timing)
Description: The language shall provide capabilities with regard to timing in order to address safety concerns.
Rational: Error modeling.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0026 - Age constraint per runnable entity

Name: CAG#0026 - Age constraint per runnable entity
Alias: Age constraint per runnable entity
Description: The language shall be capable of specifying the age constraint of data processed by every runnable entity of a SW-C.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0027 - Synchronization constraint per runnable entity

Name: CAG#0027 - Synchronization constraint per runnable entity
Alias: Synchronization constraint per runnable entity
Description: The language shall be capable of specifying the synchronization constraint of data processed by every runnable entity of a SW-C.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0039 - Sequence Constraint

Name: CAG#0039 - Sequence Constraint
Alias: Sequence Constraint
Description: The language shall provide means to specify sequence constraints.
Rational: The execution order constraint on the implementation level (AUTOSAR, ARTE) is too strict, because it requires that the runnable entities part of the execution order constraint are executed in subsequent order.
Status: Approved
Priority: Medium
CAG#0041 - TADL in Modeling Languages

Name: CAG#0041 - TADL in Modeling Languages
Alias: TADL in Modeling Languages
Description: The base concepts of events and event chains shall be expressed in EAST-ADL and SysML. It shall be possible to organize event chains hierarchically along the Function Hierarchy of EAST-ADL or the Block structure of SysML (End2End constraints). Also constraints cross cutting a hierarchical model, as required for synchronization constraints shall be possible. Sample Usages should be worked out. (e.g. in demonstrators)

Status: Approved
Priority: Medium

CAG#0045 - Constraint Language

Name: CAG#0045 - Constraint Language
Alias: Constraint Language
Description: A constraint language is required, in order to be able to do constraint checking. The constraint language should contain basic arithmetic expressions like =, <, >, -, +, and, or, ... It seems not necessary to define a new constraint language, since OCL is available in UML tooling or language specific expressions can be evaluated in runtime environments as C or Modelica. A language neutral expression should be part of an event chain, the related events should be the arguments of the constraint expression.

Status: Approved
Priority: Medium

INRIA#0004 - Functional time

Name: INRIA#0004 - Functional time
Alias: Functional time
Description: The TADL shall be capable modeling functional relations at the different levels of a design (precedence, causality, concurrency…) independently from a physical time reference.

Comment: Clarify

Status: Approved
Priority: High

RTAW#0005 - Synchronized schedules
Name: RTAW#0005 - Synchronized schedules
Alias: Synchronized schedules
Description: TADL shall allow describing which schedules of tasks or frames run synchronously or may drift against each other. In the latter case it should be possible to describe the drift speed.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0004 - Delay and jitter
Name: UPB#0004 - Delay and jitter
Alias: Delay and jitter
Description: The Timing Model shall support the specification of delay and jitter conditions
Comment: implemented already in TIMMO
Status: Rejected
Priority: High
Explanation: None
Type: Requirement
Relations: UC#0001 - Specify Time Budgets

UPB#0007 - Execution times
Name: UPB#0007 - Execution times
Alias: Execution times
Description: The Timing Model shall support the specifications of execution times (best, average, worst case).
Comment: Already implemented by TIMMO and AUTOSAR.
Status: Rejected
Priority: High
Explanation: None
Type: Requirement
Relations: UC#0001 - Specify Time Budgets

UPB#0016 - Network frame modeling
Name: UPB#0016 - Network frame modeling
Alias: Network frame modeling
Description: The Timing Model shall support modeling of network frames and their timing constraints.
Comment: See also UPB#0003
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:
UPB#0017 - Synchronization

Name: UPB#0017 - Synchronization
Alias: Synchronization
Description: The Timing Model shall provide mechanism to describe synchronization.

Rational: It is required to specify the synchronization between for example tasks and bus communications, synchronously sending and receiving signals.

Comment: See time bases UPB#0005 and UPB#0024

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations: UC#0010 - Specify Synchronization Timing Constraints

UPB#0022 - Software instruction level

Name: UPB#0022 - Software instruction level
Alias: Software instruction level
Description: The Timing Model shall support timing specification at SW instruction level

Comment: See UPB#0020 What means SW instruction level - processor's instruction set and/or C programming language level.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0004

Name: VTEC#0004
Alias: Support timing characteristics of behavior/algorithm
Description: TADL shall support the specification of execution time for an activity/component. Worst case, best case, average case execution time should be supported.

Rationale: In order to conveniently elaborate with different behavior and different algorithms, and in order to get a good timing estimation, it is necessary to have a means to characterize the timing performance of the algorithms used for realizing part of the functionality involved in the event chain of the timing budget.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0006

Name: VTEC#0006
Alias:
Description: The Timing Model shall support different interpretations of the timing information. Interpretations that shall be supported are:
Timing requirements - A requirement imposed to govern a correct timing behavior of a high-level function or application.

Timing constraint - A requirement imposed as part of a design decision.

Timing property - A value measured or derived for an already existing component that is known to hold.

Timing requirements and constraints are imposed as part of a top-down design methodology where they set the limits for a component yet to be developed, e.g., maximum allowed execution time. Timing properties are used in a bottom up approach when components are reused, e.g., worst case execution time.

VTEC#0007

- **Name**: VTEC#0007
- **Alias**: Mode-dependent timing constraints
- **Description**: TADL shall support different timing constraints on the same event chain depending on system mode.
- **Status**: Approved
- **Priority**: Medium
- **Explanation**: None
- **Type**: Requirement
- **Relations**:

VTEC#0019

- **Name**: VTEC#0019
- **Alias**:
- **Description**: TADL must be able to specify continuous-time properties of the control design.
- **Comment**: Representative timing properties are settling time, rise time, allowable sampling period, etc.
- **Status**: Approved
- **Priority**: High
- **Explanation**: None
- **Type**: Requirement
- **Relations**:

VTEC#0020

- **Name**: VTEC#0020
- **Alias**:
- **Description**: TADL must be able to define the allowable time delays within the control loop.
- **Comment**: The delay may be due to longer execution time of a computation, preemption, or communication.
- **Status**: Approved
VTEC#0027

Name: VTEC#0027
Alias: VTEC#0027
Description: TADL shall support industrial state-of-the-art schedulability analysis methods to be used for verification of timing behavior.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0028

Name: VTEC#0028
Alias: VTEC#0028
Description: Timing constraints shall be composable and possible to maintain in a scenario with variable elements
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0032

Name: VTEC#0032
Alias: VTEC#0032
Description: TADL shall support infrastructure-independent timing information for applications.

Explanations:
TADL shall support the specification of execution time for an activity/component. Worst case, best case, average case execution time should be supported.

Rationale: In order to conveniently elaborate with different behavior and different algorithms, and in order to get a good timing estimation, it is necessary to have a means to characterize the timing performance of the algorithms used for realizing part of the functionality involved in the event chain of the timing budget.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0041

Name: VTEC#0041
Alias: TADL shall be able to capture the important implementation parameters in the model.

Comment: These parameters are relevant for timing properties.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

VTEC#0045

Name: VTEC#0045
Alias: TADL shall support the specification of signal age.

Comment: For example, a component may provide an output derived from a sensor value. This value may at the finish time of the component already be of a certain age, e.g., sensor value read at exec-time/2 and released after some post-processing at exec-time.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

2.2.2 Distribution

TUBS#0001 - Uncertainty

Name: TUBS#0001 - Uncertainty
Alias: Uncertainty
Description: TADL shall provide the facilities to model relevant timing system parameters with uncertain parameter values and enable the characterization of the uncertainty by means of mathematical functions.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

VTEC#0047

Name: VTEC#0047
Alias: TADL shall support the specification of probabilistic timing properties and constraints.

Comment: an evident distinction between the deterministic and probabilistic timing specifications must be visible in the model.
2.2.3 Events

BOSCH#0007 - Explicit and implicit events

- **Name:** BOSCH#0007 - Explicit and implicit events
- **Alias:** Explicit and implicit events
- **Description:** The TADL shall be capable of distinguishing explicit and implicit events.
 - Explicit events: events originating from the use of the plant or events in sequence control, e.g. driver hits brake pedal.
 - Implicit events: events originating from the physics of the plant or the environment, e.g. back pressure valve switching in dependence of pressure ratio or switch-off heating element when a maximum temperature is reached.

UPB#0002 - Event type a-periodic

- **Name:** UPB#0002 - Event type a-periodic
- **Alias:** Events Types
- **Description:** The Timing Model shall support the event type a-periodic and specify the definition of the event type’s semantic.

VTEC#0026

- **Name:** VTEC#0026
- **Description:** TADL shall support both internal and external triggering of events and signals. I.e., both software and hardware generated triggers.
2.2.4 Exchange

CAG#0037 - EAST-ADL XML

Name: CAG#0037 - EAST-ADL XML
Alias: EAST-ADL XML
Description: The language shall provide a description of the EAST-ADL XML.

Rational: In order to ensure interoperability and seamless model migration an interchange format shall be specified including the steps to be taken to convert a model from one version of EAST-ADL XML to another, most likely the subsequent one.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0050 - TADL profile for dynamic UML diagrams

Name: CAG#0050 - TADL profile for dynamic UML diagrams
Alias: TADL profile for dynamic UML diagrams
Description: As being the widely recognized standard for modeling of behavior, within TIMMO-2-USE TADL profiles for the dynamic UML diagrams: State Machine diagram, Activity diagram and Sequence diagram shall be developed. These diagrams are also suitable for describing operational scenarios on a high level of abstraction, and thus timing conditions should be part of these models.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

DSP#0001 - Code level exchange

Name: DSP#0001 - Code level exchange
Alias: Code level exchange
Description: It shall be possible to exchange code level descriptions including necessary meta-information for a timing analysis to be performed on this code.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

INRIA#0005 - Executable models

Name: INRIA#0005 - Executable models
Alias: Simulation
Description: It shall be possible to execute a TADL model to obtain a schedule (partial or totally ordered set of events).

Comment: Is this different from scheduling analysis? What comes first define a
schedule and then analyzing scheduling? What information contained in the model/s is required for performing such schedule definition? What does execution means in this context?

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

RTAW#0002 - Extension of AUTOSAR 4.0

Name: RTAW#0002 - Extension of AUTOSAR 4.0
Alias: Extension of AUTOSAR 4.0
Description: TADL-2 shall be compliant with AUTOSAR 4.0 or higher and adhere to AUTOSAR meta-modeling rules.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0008 - FIBEX Compliance

Name: UPB#0008 - FIBEX Compliance
Alias: FIBEX Compliance
Description: The Timing Model shall be compliant to FIBEX (cluster) timing specifications

Comment: Comparison between AUTOSAR and FIBEX standard. Comparison on the XML schema level and determine missing element, as well as transformations required to exchange information using these standards.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations: UC#0008 - Exchange Models

UPB#0009 - AUTOSAR compliance

Name: UPB#0009 - AUTOSAR compliance
Alias: AUTOSAR compliance
Description: The Timing Model shall be compliant to AUTOSAR standard 4.#.

Comment: AUTOSAR R4.0.# including ARTE

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0010 - AUTOSAR Timing Extensions
Name: UPB#0010 - AUTOSAR Timing Extensions
Alias: AUTOSAR Timing Extensions
Description: The Timing Model shall be compliant to AUTOSAR Timing Extensions.

Comment: See also UPB#0009
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0029

Name: VTEC#0029
Alias:
Description: TADL shall support the definition of configurations at vehicle level.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0039

Name: VTEC#0039
Alias:
Description: The semantics and syntax of TADL shall be compatible with the AUTOSAR approach.

Comment: That is, meta-meta model (=modeling guidelines) and meta-model (=software component template).
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0040

Name: VTEC#0040
Alias:
Description: The semantics and syntax of TADL shall be based on EAST ADL2 (ATESST, MAENAD) timing requirements wherever applicable.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:
2.2.5 Hardware

CAG#0005 - Hardware

- **Name:** CAG#0005 - Hardware
- **Alias:** Hardware
- **Description:** The language shall provide the capability to specify timing information covering hardware entities.
- **Status:** Approved
- **Priority:** Medium
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

CAG#0008 - Multi-Core

- **Name:** CAG#0008 - Multi-Core
- **Alias:** Multi-Core
- **Description:** The language shall provide means to describe timing information in the context of multi-core systems.

 Rational: It shall be checked whether the TADL language elements are sufficient to specify timing information for multi-core systems. Possibly, the semantics of some language elements need to be sharpened or new elements shall be introduced.

- **Status:** Approved
- **Priority:** Medium
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

CAG#0024 - Multi-Core (Scheduling Analysis)

- **Name:** CAG#0024 - Multi-Core (Scheduling Analysis)
- **Alias:** Multi-Core (Scheduling Analysis)
- **Description:** The language shall provide means to describe the timing information required for performing scheduling analysis for applications executed on multi-core systems.

- **Status:** Approved
- **Priority:** Medium
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

CAG#0032 - HW/SW Co-design (Language)

- **Name:** CAG#0032 - HW/SW Co-design (Language)
- **Alias:** HW/SW Co-design
- **Description:** The language shall provide means to support the HW/SW co-design.
- **Status:** Approved
- **Priority:** Medium
- **Explanation:** None
- **Type:** Requirement
Relations:

RTAW#0001 - ECU partitioning

Name: RTAW#0001 - ECU partitioning
Alias: ECU partitioning
Description: T2U shall allow describing the dependencies between safety requirements and ECU partitioning that are defined to meet these requirements.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0003 - Bus communication

Name: UPB#0003 - Bus communication
Alias: Bus Communication
Description: The Timing Model shall support modeling of timing properties for bus communication (e.g. FlexRay, CAN, RTEthernet)
Comment: AUTOSAR compliance and introduction of Ethernet in AUTOSAR Release 4.0
Possibly define more requirements how to related timing properties already defined in the AUTOSAR standard with TADL timing guarantees (WP2 and WP4)
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0011 - Multi-core support

Name: UPB#0011 - Multi-core support
Alias: Multi-core support
Description: The Timing Model shall be applicable to multi-core systems.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0019 - Hardware relation

Name: UPB#0019 - Hardware relation
Alias: Hardware relation
Description: The Timing Model shall be capable of describing timing properties that are related to hardware, like clock rates, sampling rates, bit-duration, etc.
Comment: To what extend shall this be described? EAST-ADL provides on the Design Level Sensor, Actuator, ECU, processor, etc. It shall be checked what AUTOSAR already specifies and which information is missing in order to perform Worst Case Execution Time analysis (cache, ...).
VTEC#0003

Name: VTEC#0003
Alias: Support timing characterization of hardware
Description: TADL shall support generic modeling of timing behavior related to commonly used hardware devices, such as microprocessor, CAN, Flexray, etc.

Rationale: In order to conveniently elaborate with different hardware, and in order to get a good timing estimation, it is necessary to have a means to characterize the timing performance of the hardware devices used in the timing budget.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0034

Name: VTEC#0034
Alias:
Description: TADL shall support application-independent timing information for infrastructure components (e.g. hardware).

Explanations:
TADL shall support generic modeling of timing behavior related to commonly used hardware devices, such as microprocessor, CAN, Flexray, etc.

Rationale: In order to conveniently elaborate with different hardware, and in order to get a good timing estimation, it is necessary to have a means to characterize the timing performance of the hardware devices used in the timing budget.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

2.2.6 Mode

BOSCH#0005 - Mode dependent timing requirements for control applications

Name: BOSCH#0005 - Mode dependent timing requirements for control applications
Alias: Mode dependent timing requirements for control applications
Description: The TADL shall be capable of modeling mode dependent timing requirements
for open and closed loop control applications

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

BOSCH#0006 - Mode dependencies

Name: BOSCH#0006 - Mode dependencies
Alias: Mode dependencies
Description: The TADL shall be capable of modeling dependencies between modes and conditions for mode transitions
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

CAG#0046 - Mode dependent Application

Name: CAG#0046 - Mode dependent Application
Alias: Mode dependent Application
Description: The systems and applications of one or more demonstrators should be mode dependent, in order to show how to handle modes in the TADL language. The modes could be error modes, system modes or modes on vehicle level (driving profile, energy mode)
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0047 - Mode dependent End2End delay

Name: CAG#0047 - Mode dependent End2End delay
Alias: Mode dependent End2End delay
Description: In order to demonstrate the ability to deal with modes, demonstrator should contain an End-to-End event chain, which is dependent on a certain mode. The constraint is only violated, if the violation happens, the system is in the depending mode. In TADL it has to be defined, if only events, and event chains, or also constraints have to be mode-dependent
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0048 - Mode Switch in Stimulus/Response

Name: CAG#0048 - Mode Switch in Stimulus/Response
Alias: Mode Switch in Stimulus/Response
Description: In a further example dealing with modes, an End2End event chain, where the
stimulus event occurs in a mode different from the mode, where the response event occurs. This is only possible, when between the stimulus event and the response event; one or more mode changes take place. A constraint on the event chain is only violated, if the mode switch takes place at run time, between stimulus and response event.

CAG#0049 - Timing Constraint on Mode Switch

Name: CAG#0049 - Timing Constraint on Mode Switch
Alias: Timing Constraint on Mode Switch
Description: Timing conditions on a mode switch shall be expressed by a repetition rate constraint. The constraint shall ensure, that a mode switch must be from mode A to mode B, if the time span between the two mode switches is smaller than a threshold (t), and the mode switch must take place from mode A to mode C, if the time span between the two mode switches is bigger than a threshold (t).

UPB#0018 - Redundancy/safety

Name: UPB#0018 - Redundancy/safety
Alias: Redundancy/safety
Description: The Timing Model shall support specification of redundancy (safety).
Comment: It shall be possible to describe the re-execution of any executable entity, like tasks, runnable entities, functions, components and the related timing. This should be possible for different modes and mode transitions, like normal to error mode transition, etc.

VTEC#0008

Name: VTEC#0008
Alias: Mode-dependent task and bus schedule descriptions
Description: TADL shall support the description of different task and bus schedules depending on system modes.
2.2.7 Reuse

CAG#0017 - Reuse of events

Name: CAG#0017 - Reuse of events
Alias: Reuse of events
Description: The language shall provide means to reuse existing events.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0018 - Reuse of event chains

Name: CAG#0018 - Reuse of event chains
Alias: Reuse of event chains
Description: The language shall provide means to reuse existing event chains.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0020 - Revising timing constraints

Name: CAG#0020 - Revising timing constraints
Alias: Revising timing constraints
Description: The language shall provide means to alter the timing constraints of events and event chains being reused.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0051 - Reuse of timing constraints

Name: CAG#0051 - Reuse of timing constraints
Alias: Reuse of timing constraints
Description: The language shall provide means to reuse existing timing constraints.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0011

Name: VTEC#0011
Alias: Several alternative timing solutions
Description: TADL shall support defining several alternative solutions.
Rationale: In the negotiation process with a supplier, it is important to simultaneously capture all alternatives currently being discussed. This will allow both supplier and OEM to efficiently evaluate and compare them.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

2.2.8 Time

BOSCH#0008 - Concepts of Time

Name: BOSCH#0008 - Concepts of Time
Alias: Concepts of Time
Description: The TADL shall be capable of distinguishing different concepts of time: solution timing (timing resulting from the chosen solution), environment timing, process timing (physical process of the plant)

Rationale: For system understanding and co-engineering considerations it is important to explicitly model the transition from the continuous to the discrete SW world.

Comment: See BOSCH#0002
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

BOSCH#0009 - Specification of events in the continuous environment

Name: BOSCH#0009 - Specification of events in the continuous environment
Alias: Specification of events in the continuous environment
Description: The TADL shall be capable of specifying (implicit) events originating in the continuous environment.
Currently, only crankshaft speed is supported.
In TADL it shall be possible to specify arbitrary events referencing arbitrary (continuous) physical processes.
Example: Event is fired when a maximum temperature is reached (and heating is switched off).

Physical process: change of a continuous signal over time

Comment: WP4 use case is how to obtain time values for a timing constraint.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:
CAG#0010 - Time bases

Name: CAG#0010 - Time bases
Alias: Time bases
Description: The language shall provide capabilities to specify multiple/several time bases.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

INRIA#0001 - Multiform concepts of Time

Name: INRIA#0001 - Multiform concepts of Time
Alias: Multiform concepts of Time
Description: The TADL shall be capable of modeling time evolution on any repetitive event (camshaft, meters, seconds, etc.).
Comment: different time domains
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

INRIA#0002 - Time bases

Name: INRIA#0002 - Time bases
Alias: Time bases
Description: The TADL shall be capable of expressing in a common model different time bases.
Comment: See UPB requirement on time bases
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

INRIA#0003 - Timing properties

Name: INRIA#0003 - Timing properties
Alias: Timing properties
Description: The TADL shall be capable of expressing complex constraints based on different time bases.
Comment: See UPB requirements on time bases
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:
UPB#0005 - Global time base

Name: UPB#0005 - Global time base
Alias: Global time base
Description: The Timing Model shall support the specification of a global time base.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations: UC#0010 - Specify Synchronization Timing Constraints

UPB#0014 - Time- and event triggering

Name: UPB#0014 - Time- and event triggering
Alias: Time- and event triggering
Description: The Timing Model shall support time- and event-triggered mechanisms.
Comment: Is already implemented in TIMMO.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0024 - Relationship between time bases

Name: UPB#0024 - Relationship between time bases
Alias: Relationship between time bases
Description: The Timing Model shall support describing relationships between various time bases.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

2.2.9 Tracing

BOSCH#0002 - Solution dependent and solution independent timing requirements

Name: BOSCH#0002 - Solution dependent and solution independent timing requirements
Alias: Solution dependent and solution independent timing requirements
Description: The TADL shall be capable of distinguishing timing requirements originating in the problem space (e.g. from plant to be controlled see BOSCH#0001) and solution dependent timing requirements (e.g. from the discrete software solution for the control task).
Status: Approved
Priority: High
BOSCH#0003 - Tracing of control timing requirements

Name: BOSCH#0003 - Tracing of control timing requirements
Alias: Tracing of control timing requirements
Description: The TADL shall be capable of tracing (solution dependent) timing requirements to 1) the chosen solution (e.g. discretization method), and 2) the underlying intrinsic timing requirement originating in the problem space (see Bosch#0001).

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

CAG#0001 - Events between LoA

Name: CAG#0001 - Events between LoA
Alias: Events between LoA
Description: The language shall provide means to specify the relation between events on different levels of abstraction.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0002 - Event chains between LoA

Name: CAG#0002 - Event chains between LoA
Alias: Event chains between LoA
Description: The language shall provide means to specify the relation between event chains on different levels of abstraction.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0011 - Time bases relation

Name: CAG#0011 - Time bases relation
Alias: Time bases relation
Description: The language shall provide capabilities to relate different time bases.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:
DSP#0004 - Target processor dependence

Name: DSP#0004 - Target processor dependence
Alias: Target processor dependence
Description: It shall be possible that code level timing analysis according to DSP0002 can be performed for a required target processor.
Status: Approved
Priority: High
Explanation: None
Type: Requirement

UPB#0001 - Abstraction levels

Name: UPB#0001 - Abstraction levels
Alias: Abstraction Levels
Description: The Timing Model shall define and handle several levels of abstraction as defined by the EAST-ADL.
Status: Approved
Priority: High
Explanation: None
Type: Requirement

UPB#0012 - Black box behavior

Name: UPB#0012 - Black box behavior
Alias: Black box behavior
Description: The Timing Model shall support description for black-box timing behavior on the interface of a component.
Rational: Sometimes it is necessary to hide the internal of a component due to IP reasons respectively due to abstraction purposes.
Status: Approved
Priority: High
Explanation: None
Type: Requirement

UPB#0023 - AUTOSAR views

Name: UPB#0023 - AUTOSAR views
Alias: AUTOSAR views
Description: The language shall support the AUTOSAR views, like System, Virtual Function Bus, ECU, Component.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

Relations:
VTEC#0001

Name: VTEC#0001
Alias:
Description: TADL shall support the traceability between communication timing on
implementation level and connector timing on design level

Requirement 30 from TIMMO:
The Timing Model shall support the traceability (from upper abstraction levels) of
a timing requirement/constraint through the different abstraction layers.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0002

Name: VTEC#0002
Alias: Timing budget support
Description: TADL shall support dividing an end-to-end delay constraints into smaller pieces
(time budgeting), where the smaller pieces can be assigned to stakeholders for
implementation.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0012

Name: VTEC#0012
Alias: Decision of timing solution
Description: TADL shall support the clear identification of the final decision/agreement of one
of several proposed alternative solutions.

Rationale: When a timing budget has been finally agreed with a set of suppliers,
the agreed alternative shall be marked so that it is possible to see the final
decision. The alternatives shall not be deleted, in the case there will be a
renegotiation.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0013

Name: VTEC#0013
Alias: Effect of a timing solution
Description: TADL shall support the description of the consequences of a certain solution on
the system.

Rationale: An effect can relate to bus and task schedules and their implications
on timing performance of the system.

VTEC#0016

- **Name:** VTEC#0016
- **Alias:**
- **Description:** TADL shall define the dependency on timing properties between functions and components.
- **Status:** Approved
- **Priority:** Medium
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

VTEC#0021

- **Name:** VTEC#0021
- **Alias:**
- **Description:** TADL must maintain the traceability between the continuous timing properties of the control design and the discrete-time specifications on the software implementation.
- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

2.3 WP3 – Algorithms and Tools

ABS#0003 - Executable for WCET analysis

- **Name:** ABS#0003 - Executable for WCET analysis
- **Alias:** Executable for WCET analysis
- **Description:** WCET analysis requires a compiled linked executable file.
- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

ABS#0004 - Mapping to Source Code for WCET analysis

- **Name:** ABS#0004 - Mapping to Source Code for WCET analysis
- **Alias:** Mapping to Source Code for WCET analysis
- **Description:** WCET analysis requires the following information in order to map the analysis results to the source code:
 - availability of source code,
either debug information in the executable or a map file with information linking source code and binary code.

Status: Approved

Priority: High

Explanation: None

Type: Requirement

Relations:

ABS#0005 - Analysis Start Point for WCET analysis

Name: ABS#0005 - Analysis Start Point for WCET analysis

Alias: Analysis Start Point for WCET analysis

Description: WCET analysis requires a start point as an address or a routine name

Status: Approved

Priority: High

Explanation: None

Type: Requirement

Relations:

ABS#0006 - Loop Bounds for WCET analysis

Name: ABS#0006 - Loop Bounds for WCET analysis

Alias: Loop Bounds for WCET analysis

Description: WCET analysis requires information on loop bounds that cannot be found by automatic analysis.

Status: Approved

Priority: High

Explanation: None

Type: Requirement

Relations:

ABS#0007 - Recursion Bounds for WCET analysis

Name: ABS#0007 - Recursion Bounds for WCET analysis

Alias: Recursion Bounds for WCET analysis

Description: WCET analysis requires information on bounds for recursion.

Status: Approved

Priority: High

Explanation: None

Type: Requirement

Relations:

ABS#0008 - Function Pointers for WCET analysis

Name: ABS#0008 - Function Pointers for WCET analysis

Alias: Function Pointers for WCET analysis

Description: The Code-Level Timing Analysis requires information on possible values of function pointers.

Status: Approved

Priority: High

Explanation: None

Type: Requirement

Relations:
ABS#0009 - Volatile Variables for WCET analysis

- **Name:** ABS#0009 - Volatile Variables for WCET analysis
- **Alias:** Volatile Variables for WCET analysis
- **Description:** The Code-Level Timing Analysis requires declaration of volatile variables.
- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

ABS#0010 - Improving precision of WCET analysis by additional parameters

- **Name:** ABS#0010 - Improving precision of WCET analysis by additional parameters
- **Alias:** Improving precision of WCET analysis by additional parameters
- **Description:** WCET analysis requires for better precision the following information:
 - range information (lower and upper bounds) for input variables,
 - addresses of memory accesses that cannot be found by automatic analysis,
 - infeasible code snippets,
 - flow facts that consist of linear constraints for the execution counts of several program points
 - modes (exclusive execution paths of the runnable).
- **Status:** Approved
- **Priority:** Medium
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

ABS#0011 - Supported Processor for WCET analysis

- **Name:** ABS#0011 - Supported Processor for WCET analysis
- **Alias:** Supported Processor for WCET analysis
- **Description:** WCET analysis requires that the code is compiled for a supported processor.
- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

ABS#0012 - Processor Configuration for WCET analysis

- **Name:** ABS#0012 - Processor Configuration for WCET analysis
- **Alias:** Processor Configuration for WCET analysis
- **Description:** WCET analysis requires information on the configuration of the processor.
- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**
ABS#0013 - Processor-Specific Settings for WCET analysis

Name: ABS#0013 - Processor-Specific Settings for WCET analysis
Alias: Processor-Specific Settings for WCET analysis
Description: Processor specific parameters are required to perform WCET analysis
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

CAG#0034 - Automation

Name: CAG#0034 - Automation
Alias: Automation
Description: The tools shall automate ...
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

DSP#0003 - Code level results

Name: DSP#0003 - Code level results
Alias: Code level results
Description: It shall be possible to exchange results of a code level analysis according to DSP#0002 back to an originating tool for documentation and comparison.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

RTAW#0003 - Scenario based analysis

Name: RTAW#0003 - Scenario based analysis
Alias: Scenario based analysis
Description: T2U shall provide the means to describe (worst-case) scenarios of frame transmission events for sets of frames.
Rational:
Some CAN communication matrices, are based on a lot of event driven frame transmissions (i.e. ComTxModeMode= Direct or Mixed), as opposed to periodic transmissions (i.e. ComTxModeMode=periodic).
A per frame (worst-case) model of the transmission events based on the ComTxIPduMinimumDelayTimeFactor, leads generally to an over pessimistic estimation of worst-case frame transmission delays.
The specification of a Worst-Case scenario of (transmission) event occurrences for a set of frame is a solution to obtain less pessimistic worst-case bound. How to determine such scenario is probably out of scope, but TADL-2 shall provide the means to describe these scenarios.
Status: Approved
Deliverable D1.1

RTAW#0004 - Data converters

Name: RTAW#0004 - Data converters
Alias: Data converters
Description: T2U shall ease the exchange of data between tools through data format converters between most commonly used open data formats.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

TUBS#0003

Name: TUBS#0003
Alias:
Description: Formal system level performance analysis shall be able to analyze systems with uncertain parameter values.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0003 - Methods for estimating WCET at analysis and design levels.

Name: VTEC#0003 - Methods for estimating WCET at analysis and design levels.
Alias: Methods for estimating WCET at analysis and design levels.
Description: TIMMO-2-USE shall explore efficient methods for estimating WCET at analysis and design levels.

Rationale: In order to really take timing into account in early development phases, efficient methods for estimating WCET in these phases. Early development phases often imply high abstraction levels.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0009 - Method and tool support for mode-dependent bus scheduling

Name: VTEC#0009 - Method and tool support for mode-dependent bus scheduling
Alias: Method and tool support for mode-dependent bus scheduling
Description: TIMMO-2-USE shall explore methods for obtaining good task and bus schedules based on modes.
Rationale: In order to make the bus communication more efficient, it might be changed depending on the mode of functions communicating over it. This imposes challenges for synchronizing the connected ECUs so that they all assume the same schedule.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0014 - Tool support for comparing alternative timing solutions

Name: VTEC#0014 - Tool support for comparing alternative timing solutions
Alias: Tool support for comparing alternative timing solutions
Description: TIMMO-2-USE shall provide tool support for comparing several timing solutions for the following two purposes:
1. help the designer in making a good decision
2. help in the negotiation between OEM and supplier.
Status: Approved
Priority: Low
Explanation: None
Type: Requirement
Relations:

VTEC#0017

Name: VTEC#0017
Alias:
Description: TIMMO-2-USE shall investigate methods and tools to identify the dependency on timing properties between functions and components.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0022

Name: VTEC#0022
Alias:
Description: TIMMO-2-USE shall develop methods and tools that convert the continuous timing requirements of the control design to the discrete-time specification of the software components.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0023

Name: VTEC#0023
Alias: TIMMO-2-USE shall develop methods and tools to verify if a given way of decomposing the controller to software components and allocating them to ECUs and the allocation of tasks and bus-frames satisfies the timing requirements.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0024

Name: VTEC#0024
Alias: TIMMO-2-USE shall investigate the possibility of methods and tools for optimizing the decomposition of the controller and the allocation of the software components and the allocation of tasks and bus-frames.

Status: Approved
Priority: Low
Explanation: None
Type: Requirement
Relations:

VTEC#0025

Name: VTEC#0025
Alias: TIMMO-2-USE shall allow the partners to integrate their component models so as to verify if the complete application can satisfy the timing requirements.

Comment: virtual integration support. The Timing Model shall support the notion of deadline as the last allowed finish time of an activity. Decomposition of deadlines should be possible, i.e., when an activity is broken down into sub-activities.

Status: Approved
Priority: Low
Explanation: None
Type: Requirement
Relations:

VTEC#0030

Name: VTEC#0030
Alias: TIMMO-2-USE shall explore design methods for exploiting knowledge on vehicle configurations.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:
VTEC#0031

Name: VTEC#0031
Alias:
Description: TIMMO-2-USE shall explore methods for scheduling based on vehicle configurations
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0033 - Methods for timing characterization of behavior/algorithm

Name: VTEC#0033 - Methods for timing characterization of behavior/algorithm
Alias: Methods for timing characterization of behavior/algorithm
Description: TIMMO-2-USE shall explore efficient methods for characterizing behavior/algorithms with respect to timing.
Rationale: By combining the behavior/algorithms characterization with the ditto of hardware, it is theoretically possible to achieve a concrete WCET.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0035 - Methods for timing characterization of hardware

Name: VTEC#0035 - Methods for timing characterization of hardware
Alias: Methods for timing characterization of hardware
Description: TIMMO-2-USE shall explore efficient methods for characterizing hardware with respect to timing.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0036

Name: VTEC#0036
Alias:
Description: TADL shall support constructs that allow binding application-specific and infrastructure-specific timing information into absolute timing values (e.g. ms)
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:
VTEC#0038

Name: VTEC#0038
Alias:
Description: TIMMO-2-USE shall use EAXML and ARXML files for exchange between tools.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0042

Name: VTEC#0042
Alias:
Description: The values of the implementation parameters in TADL model shall be automatically transferrable to the implementation software.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0044

Name: VTEC#0044
Alias:
Description: TIMMO-2-USE shall explore the methods and tools to analyze the synchronization constraint.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0048

Name: VTEC#0048
Alias:
Description: TIMMO-2-USE shall investigate methods and tools to analyze the timing properties using the probabilistic information.

Comment: the timing characteristics of the events in an event chain may be mixed. Some events have deterministic specifications; others have probabilistic specifications. The methods must be able to handle both types of information in a universal way.
Status: Approved
Priority: Low
Explanation: None
Type: Requirement
Relations:
2.4 WP4 – Methodology

ABS#0001 - Timing Analysis in Implementation Phase

- **Name:** ABS#0001 - Timing Analysis in Implementation Phase
- **Alias:** Timing Analysis in Implementation Phase
- **Description:** The T2U methodology shall be capable of validation of timing properties in the Implementation phase.
- **Status:** Rejected
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

BOSCH#0004 - Collaborative Engineering of Control Applications

- **Name:** BOSCH#0004 - Collaborative Engineering of Control Applications
- **Alias:** Collaborative Engineering of Control Applications
- **Description:** The TIMMO-2-USE methodology shall enable the collaboration of the control engineer and the software engineer to find an adequate software solution (with respect to timing, resource consumption, and control quality) for a given control task.

 Rationale: Better control quality requires more frequent sampling; this in turn increases resource consumption and decreases composability.

 Comment: use case is to determine the "limits" of a solution. Collaboration of roles functional engineer and software engineer. Possibly specify a collaboration use case.

- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

BOSCH#0010 - Methodology for timing design of control applications

- **Name:** BOSCH#0010 - Methodology for timing design of control applications
- **Alias:** Methodology for timing design of control applications
- **Description:** The methodology shall contain explicit steps for the timing design of open and closed loop control applications at all levels (i.e. requirements specification, design, implementation, and test)

 Comment: See BOSCH#0009, etc.

- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

BOSCH#0011 - Derivation of discrete timing requirements
Name: BOSCH#0011 - Derivation of discrete timing requirements
Alias: Derivation of discrete timing requirements
Description: The methodology shall support the transformation of intrinsic timing requirements for control applications stemming from the physics of the plant and the environment (see Bosch #0001) to discrete (solution dependent) SW timing requirements
Comment: see BOSCH#0009 and BOSCH#0010, etc.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

CAG#0006 - Obtain timing information (closed-loop)
Name: CAG#0006 - Obtain timing information (closed-loop)
Alias: Obtain timing information (closed-loop)
Description: The methodology shall describe the steps to obtain timing information of closed-loop systems/applications.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0007 - Use of SystemC
Name: CAG#0007 - Use of SystemC
Alias: Use of SystemC
Description: The methodology shall describe the use of SystemC on different levels of abstraction.
Rational: T2U shall check whether SystemC can be used as Model of Computation in order to obtain timing information on various levels of abstraction.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0009 - Scheduling Analysis
Name: CAG#0009 - Scheduling Analysis
Alias: Scheduling Analysis
Description: The methodology shall describe what information from models on different levels of abstraction and views (AUTOSAR) are required to perform scheduling analysis.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:
CAG#0016 - Use of AUTOSAR timing views

Name: CAG#0016 - Use of AUTOSAR timing views
Alias: Use of AUTOSAR timing views
Description: The methodology shall describe the use of AUTOSAR timing views.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0021 - Virtual integration (timing)

Name: CAG#0021 - Virtual integration (timing)
Alias: Virtual integration (timing)
Description: The methodology shall describe the steps to be taken in order to perform virtual integration on every level of abstraction.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0030 - Distribute jitter

Name: CAG#0030 - Distribute jitter
Alias: Distribute jitter
Description: The methodology shall describe how jitter specified for a given event chain is distributed among event chain segments (time budgeting).
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0031 - HW/SW Co-design (Methodology)

Name: CAG#0031 - HW/SW Co-design (Methodology)
Alias: HW/SW Co-design
Description: The methodology shall describe the steps to be taken to perform HW/SW co-design.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0033 - EPF

Name: CAG#0033 - EPF
Alias: EPF
Description: The methodology shall be described using Eclipse Process Framework (EPF).
CAG#0035 - Task synthesis

Name: CAG#0035 - Task synthesis
Alias: Task synthesis
Description: The methodology shall describe the steps to be taken to automatically perform runnable entity to task mapping.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0036 - Variability

Name: CAG#0036 - Variability
Alias: Variability
Description: The methodology shall describe the steps to be taken to create a variant with regard to timing.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0038 - Timing Analyses

Name: CAG#0038 - Timing Analyses
Alias: Timing Analyses
Description: The methodology shall describe the possible timing analyses that can be carried out at the various levels of abstractions.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0040 - Verify timing constraints

Name: CAG#0040 - Verify timing constraints
Alias: Verify timing constraints
Description: It shall be possible to verify TADL constraints, when TADL is used within standardized modeling languages as EAST-ADL or SysML. TIMMO-2-USE shall ensure and give samples (e.g. in demonstrators) how TADL is applied in EAST-ADL and SysML TADL shall be extended, so that the verification of TADL constraints becomes possible, either dynamically or statically within these languages (e.g constraint evaluation, EMF-validation, plug-ins, etc.)
Status: Approved
DSP#0002 - Code level analysis

- **Name:** DSP#0002 - Code level analysis
- **Alias:** Code level analysis
- **Description:** It shall be possible to perform a worst case execution analysis on code level according to DSP#0001.
- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

DSP#0005 - Levels of abstraction

- **Name:** DSP#0005 - Levels of abstraction
- **Alias:** Levels of abstraction
- **Description:** It shall be possible to specify timing requirements on different levels of abstraction (e.g. single functions, integration of functions with scheduling demands, integration of functions in a complete ECU).
- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

DSP#0006 - Expressiveness

- **Name:** DSP#0006 - Expressiveness
- **Alias:** Expressiveness
- **Description:** It shall be possible to describe which timing-related information shall be exchanged in order to support certain use cases. (This is kind of a methodology question, answering e.g. questions such as which subsets of data e.g. of the AUTOSAR standard should be exchanged).
- **Status:** Approved
- **Priority:** High
- **Explanation:** None
- **Type:** Requirement
- **Relations:**

DSP#0007 - Generation of timing test units

- **Name:** DSP#0007 - Generation of timing test units
- **Alias:** Generation of timing test units
- **Description:** It shall be possible to derive units under tests (preferably following the AUTOSAR methodology) to be analyzed with simulation methods with regard to timing requirements.
- **Status:** Approved
- **Priority:** High
DSP#0008 - Test framework

Name: DSP#0008 - Test framework
Alias: Test framework
Description: It shall be possible to derive a test framework suitable to perform timing related test activities (Which question can be answered? What kind of experiments need to be executed?)

Status: Approved
Priority: High

Explanation: None

Type: Requirement

Relations:

DSP#0009 - Re-use of test descriptions

Name: DSP#0009 - Re-use of test descriptions
Alias: Re-use of test descriptions
Description: It shall be possible to re-use test descriptions for timing aspects at different phases of the development.

Status: Approved
Priority: High

Explanation: None

Type: Requirement

Relations:

TUBS#0004 - Obtain uncertain timing information

Name: TUBS#0004 - Obtain uncertain timing information
Alias: Obtain uncertain timing information
Description: The methodology shall describe the steps to obtain timing information in presence of uncertainty.

Status: Approved
Priority: Medium

Explanation: None

Type: Requirement

Relations:

UPB#0006 - Transformation

Name: UPB#0006 - Transformation
Alias: Transformation
Description: The Timing Model specifications shall support transformations to constraints and assertions.

Rational: There is a need to transform timing constraints into Property Specification Language PSL in order to specify properties on various levels of abstraction.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations: UC#0003 - Change Existing Timing Information

UPB#0013 - Reduced overhead

Name: UPB#0013 - Reduced overhead
Alias: Reduced overhead
Description: The Timing Model shall specify timing properties and constraints for multiple abstraction levels with minimal overhead.

Comment: It shall be demonstrated how the TADL and methodology are used in order to accomplish this (model only what is necessary for a specific purpose). Identify also possible use case for this.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0015 - Refinement and abstraction

Name: UPB#0015 - Refinement and abstraction
Alias: Refinement/Abstraction
Description: The Timing Model shall support refinements and abstractions between different levels of abstraction.

Comment: With regard to abstraction language elements need to be introduced to accomplish this.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0020 - Offline simulation

Name: UPB#0020 - Offline simulation
Alias: Offline simulation
Description: The Timing Model shall support offline simulation with respect to timing.

Comment: Non HIL simulation/simulation without hardware. Behavior model of the "hardware", Considering the environment (EAST-ADL). Executable model? What kind of executable models are required to perform such simulation? Possibly WP3 but check whether WP2 and WP4 are also involved.

Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

UPB#0021 - Communication simulation
Name: UPB#0021 - Communication simulation
Alias: Communication simulation
Description: The Timing Model shall support simulation of buses and networks, for example "Restbussimulation" [German].

Comment: See UPB#0020
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0004 - Timing budget negotiation between OEM and supplier

Name: VTEC#0004 - Timing budget negotiation between OEM and supplier
Alias: Timing budget negotiation between OEM and supplier
Description: The methodology shall support the interplay between OEM and supplier when it comes to negotiating and renegotiating timing budgets.
Status: Approved
Priority: Low
Explanation: None
Type: Requirement
Relations:

VTEC#0005

Name: VTEC#0005
Alias:
Description: It shall be possible to assign different access rights to different users/developers (or types/groups of users/developers) of a model. Some may be allowed to modify or view only certain parts of a model.
Comment: This requirement was used in TIMMO.
Status: Approved
Priority: Low
Explanation: None
Type: Requirement
Relations:

VTEC#0010 - Methodology support for mode-aware design

Name: VTEC#0010 - Methodology support for mode-aware design
Alias: Methodology support for mode-aware design
Description: TIMMO-2-USE shall explore the methodological implications of mode-aware design.
Rationale: Such implications could arise from the fact that functions are distributed on several ECUs, provided by different suppliers.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:
VTEC#0015 - Methodology support for change management

Name: VTEC#0015 - Methodology support for change management
Alias: Methodology support for change management
Description: The methodology shall describe how change is best handled in the context of product timing properties.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0018

Name: VTEC#0018
Alias:
Description: When multiple functions or components need be modified, TIMMO-2-USE methodology shall help the developers plan the sequence of modification so that the number of iterations can be reduced.
Status: Approved
Priority: High
Explanation: None
Type: Requirement
Relations:

VTEC#0037

Name: VTEC#0037
Alias:
Description: TIMMO-2-USE shall find the effective methodology to guide the developers of the applications and the suppliers of the platforms.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0043

Name: VTEC#0043
Alias:
Description: TIMMO-2-USE methodology shall support efficient handling of system parameters.
Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0046

Name: VTEC#0046
Alias:
Description: TIMMO-2-USE shall define reference methodology to manage synchronization issues.

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

VTEC#0049

Name: VTEC#0049
Alias:
Description: TIMMO-2-USE shall develop a reference methodology to support probabilistic timing requirements and constraints.

Status: Approved
Priority: Low
Explanation: None
Type: Requirement
Relations:

2.5 WP5 – Validation

CAG#0042 - Static verification

Name: CAG#0042 - Static verification
Alias: Static verification
Description: In order to enable the verification of timing constraints, it must be clear, which concepts of TADL can be verified statically (without simulation) and dynamically (with simulation) Requirement VTEC#N0001 gives an important hint, how to verify TADL constraints statically. (requirement and property ? provided and required in AUTOSAR) A time property can be set on a measured execution time and directly connected events, a time requirement on an event chain connecting two events on top level of a system

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement
Relations:

CAG#0043 - Dynamic verification

Name: CAG#0043 - Dynamic verification
Alias: Dynamic verification
Description: Some aspects of TADL, like the synchronization constraint requires a simulation and thus a simulation environment in order to be verified. The aspects of TADL, which have to be verified dynamically, have to be worked out. SystemC or Modelica, which offer an execution semantics and runtime environments are good candidates to perform required simulations. A mapping of EAST-ADL or SysML on these languages is either possible or already defined.

Status: Approved
Priority: Medium
Explanation: None
Relations:
Type: Requirement

Relations:

CAG#0044 - Runtime Trace

Name: CAG#0044 - Runtime Trace
Alias: Runtime Trace
Description: As an alternative solution to verify dynamic aspects of TADL, a (data) trace can be written at runtime, and verification of TADL constraints can be done after execution on base of the written runtime data. In order to do so, a format for a TADL runtime trace has to be specified. The runtime trace should allow the verification of dynamic aspects of TADL

Status: Approved
Priority: Medium
Explanation: None
Type: Requirement

Relations: